Correction

Vapor Pressure of 1,4-Dimethylbenzene, 1,4-Di(methyl-d₃)benzene, and 1,4-Dimethylbenzene-d₁₀ at 20-50 °C. Norman O. Smith, J. Chem. Eng. Data 1990, 35, 387-389.

Because of an incorrectly applied correction for a determinate error, all the pressures in Table I should be increased by 0.10 Torr. This requires a revision of Tables II-IV as follows:

Table II. Parameters for $\ln p_{Torr} = A - B/(t \, (^{\circ}C) +$

	A	В	
	16.097 26	3345.74	
d_6°	16.05214	3318.96	
d_{10}	16.03107	3311.54	

Table III. Smoothed Values of Vapor Pressure (Torr) at Rounded Temperatures

t, °C	d_0 , present work	d_6	d_{10}
20	6.57	7.03	7.11
25	8.83	9.43	9.53
30	11.72	12.50	12.61
35	15.39	16.37	16.52
40	20.00	21.23	21.40
45	25.72	27.25	27.45
50	32.76	34.64	34.88

Table IV. Standard Enthalpies and Entropies of Vaporization at 25 °C

	$oldsymbol{d_0}$	d_6	d_{10}
ΔH° ₂₉₈ , kJ/mol	42.66 ± 0.10	42.32 ± 0.06	42.22 ● 0.07
ΔS° ₂₉₈ , J/(K mol)	106.0 ± 0.3	105.4 ± 0.2	105.2 ± 0.2

At all but the highest temperature, the agreement of the vapor pressures with those of ref 2 is now better than that between refs 1 and 2. Agreement of the data in Table IV with those of the National Bureau of Standards (11) is much improved. The Bigeleisen expressions now become

$$\ln \left[p(d_0)/p(d_0) \right] = -(6618 (\pm 18))/T^2 + (2.4 (\pm 0.2))/T$$

$$\ln \left[p(d_0)/p(d_{10}) \right] = -(9272 (\pm 26))/T^2 + (8.4 (\pm 0.2))/T$$

and the remainder of the discussion is unchanged.